17 research outputs found

    Communication: Bubbles, Crystals, and Laser-Induced Nucleation

    Get PDF
    Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO2bubblenucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals

    Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the Deep Ultraviolet for Efficient Optical Pumping and High Resolution Spectroscopy

    Get PDF
    Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavityoptical parametric oscillator(OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than [Math Processing Error]. We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ([Math Processing Error] overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide

    Generation of Tunable Narrow Bandwidth Nanosecond Pulses in the Deep Ultraviolet for Efficient Optical Pumping and High Resolution Spectroscopy

    Get PDF
    Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavityoptical parametric oscillator(OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than [Math Processing Error]. We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency ([Math Processing Error] overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide

    Catalysis in Real Time Using X-Ray Lasers

    Get PDF
    We describe how the unique temporal and spectral characteristics of X-ray free-electron lasers (XFEL) can be utilized to follow chemical transformations in heterogeneous catalysis in real time. We highlight the systematic study of CO oxidation on Ru(0001), which we initiate either using a femtosecond pulse from an optical laser or by activating only the oxygen atoms using a THz pulse. We find that CO is promoted into an entropy-controlled precursor state prior to desorbing when the surface is heated in the absence of oxygen, whereas in the presence of oxygen, CO desorbs directly into the gas phase. We monitor the activation of atomic oxygen explicitly by the reduced split between bonding and antibonding orbitals as the oxygen comes out of the strongly bound hollow position. Applying these novel XFEL techniques to the full oxidation reaction resulted in the surprising observation of a significant fraction of the reactants at the transition state through the electronic signature of the new bond formation

    Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and \u3cem\u3eAb Initio\u3c/em\u3e Simulations

    Get PDF
    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process

    Symmetry-Resolved CO Desorption and Oxidation Dynamics on O/Ru(0001) Probed at the C K-edge by Ultrafast X-Ray Spectroscopy

    Get PDF
    We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10−8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while simultaneously increasing the CO oxidation barrier

    THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru

    Get PDF
    We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface

    A Surface Femtosecond Two-Photon Photoemission Spectrometer for Excited Electron Dynamics and Time-Dependent Photochemical Kinetics

    Get PDF
    A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri- cal electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dy- namics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques

    Site-Specific Photocatalytic Splitting of Methanol on TiO2(110)

    Get PDF
    Clean hydrogen production is highly desirable for future energy needs, making the understanding of molecular-level phenomena underlying photocatalytic hydrogen production both fundamentally and practically important. Water splitting on pure TiO2 is inefficient, however, adding sacrificial methanol could significantly enhance the photocatalyzed H2 production. Therefore, understanding the photochemistry of methanol on TiO2 at the molecular level could provide important insights to its photocatalytic activity. Here, we report the first clear evidence of photocatalyzed splitting of methanol on TiO2 derived from time-dependent two-photon photoemission (TD-2PPE) results in combination with scanning tunneling microscopy (STM). STM tip induced molecular manipulation before and after UV light irradiation clearly reveals photocatalytic bond cleavage, which occurs only at Ti4+ surface sites. TD-2PPE reveals that the kinetics of methanol photodissociation is clearly not of single exponential, an important characteristic of this intrinsically heterogeneous photoreaction
    corecore